Final answer:
To find the weight for stock 3 in order to achieve an expected portfolio return of 14%, you can use the formula for expected portfolio return. By rearranging the formula and plugging in the values for the expected returns and weights of stocks 1 and 2, you can solve for the weight of stock 3. The weight of stock 3 is 10.0382% divided by the expected return of stock 3.
Step-by-step explanation:
To find the weight for stock 3, we need to use the formula for expected portfolio return. The formula is:
Expected Portfolio Return = (Expected Return of Stock 1 * Weight of Stock 1) + (Expected Return of Stock 2 * Weight of Stock 2) + (Expected Return of Stock 3 * Weight of Stock 3)
Since we have the expected return and weight for Stock 1 and Stock 2, we can plug in the values and solve for the weight of Stock 3. Here's the step-by-step calculation:
- Expected Portfolio Return = 14%
- Expected Return of Stock 1 = 6.8%
- Weight of Stock 1 = 30%
- Expected Return of Stock 2 = 11.8%
- Weight of Stock 2 = 16.1%
- Expected Return of Stock 3 = ?
- Weight of Stock 3 = ?
Using the formula, we can solve for the weight of Stock 3.
Expected Portfolio Return = (6.8% * 30%) + (11.8% * 16.1%) + (Expected Return of Stock 3 * Weight of Stock 3) = 14%
Now, we can rearrange the equation and solve for the weight of Stock 3:
Expected Return of Stock 3 * Weight of Stock 3 = Expected Portfolio Return - (6.8% * 30%) - (11.8% * 16.1%)
Weight of Stock 3 = (Expected Portfolio Return - (6.8% * 30%) - (11.8% * 16.1%)) / Expected Return of Stock 3
Calculating the values:
Weight of Stock 3 = (14% - (6.8% * 0.3) - (11.8% * 0.161)) / Expected Return of Stock 3
Weight of Stock 3 = (14% - 2.04% - 1.9018%) / Expected Return of Stock 3
Weight of Stock 3 = 10.0382% / Expected Return of Stock 3
Weight of Stock 3 = 10.0382% / Expected Return of Stock 3