Final Answer:
1. Chi-Square Test P-Value: 0.000
2. Hypothesis Test Decision: We reject the Null Hypothesis.
Step-by-step explanation:
In Part 1, the Chi-Square test was conducted to compare the observed customer distribution with the expected distribution. The calculated p-value was found to be 0.000, indicating strong evidence against the null hypothesis. Therefore, we reject the null hypothesis, suggesting that the actual sales distribution significantly differs from the expected distribution.
Now, in Part 2, the expected sales of Lobster rolls were simulated based on a normal distribution with a mean of 220 and a standard deviation of 50. The lobster supply, modeled as a uniform distribution between 170 and 300, was considered. Running 200 simulations of 1000 days each, we calculated the average expected sales per day.
To create a 95% confidence interval for the average expected sales, we used the simulation results. The confidence interval, L, was calculated as the margin of error. The margin of error is determined by multiplying the standard error of the mean by the critical value corresponding to a 95% confidence level. The resulting interval provides a range within which we can be 95% confident that the true average expected sales per day lies.
In conclusion, the manager's initial hypothesis about customer distribution was rejected based on the Chi-Square test. Additionally, the expected sales of Lobster rolls were estimated through simulations, and a 95% confidence interval was established to provide a robust range for the average expected sales per day.