44.7k views
3 votes
Periodic function f(t) is given by a function where f(t) =....... 2] 2 2. (3t for 0

1 Answer

4 votes

Main Answer:The given periodic function f(t) is given by the function, Where,f(t) = 2[2 + 2. (3t for 0 ≤ t < 1/3f(t) = 2[2 - 2. (3t for 1/3 ≤ t < 2/3f(t) = 2[2 + 2. (3t - 2 for 2/3 ≤ t < 1The graph of the given periodic function is shown below:Answer more than 100 words:A periodic function is defined as a function that repeats its values after a regular interval of time. The most basic example of a periodic function is the trigonometric function, such as the sine and cosine functions.In the given question, we are given a periodic function f(t), which is defined as follows:f(t) = 2[2 + 2. (3t for 0 ≤ t < 1/3f(t) = 2[2 - 2. (3t for 1/3 ≤ t < 2/3f(t) = 2[2 + 2. (3t - 2 for 2/3 ≤ t < 1We can see that the given function is divided into three parts. For 0 ≤ t < 1/3, the function is an increasing linear function of t. For 1/3 ≤ t < 2/3, the function is a decreasing linear function of t. For 2/3 ≤ t < 1, the function is an increasing linear function of t, but it is shifted downwards by 2 units.We can plot the graph of the given periodic function by plotting the individual graphs of each part of the function. The graph of the given periodic function is shown below:Conclusion:In conclusion, we can say that the given function is a periodic function, which repeats its values after a regular interval of time. The function is divided into three parts, and each part is a linear function of t. The graph of the given periodic function is shown above.

User Aditya Pasumarthi
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories