133k views
5 votes
Given that (x, y) = (x+2y)/k if x = −2,1 and y = 3,4, is a joint probability distribution function for the random variables X and Y. Find: a. The value of K b. The marginal function of x c. The marginal function of y. d. (f(xly = 4)

1 Answer

3 votes

To find the value of K, we can use one of the given pairs of (x, y) values.

Given x = -2 and y = 3, we can substitute these values into the equation:

(x, y) = (x + 2y) / K

(-2, 3) = (-2 + 2(3)) / K

(-2, 3) = (-2 + 6) / K

(-2, 3) = 4 / K

To find K, we can rearrange the equation:

4 = (-2, 3) * K

K = 4 / (-2, 3)

Therefore, the value of K is -2/3.

b. The marginal function of x:

To find the marginal function of x, we need to sum the joint probabilities over all possible y values for each x value.

For x = -2:

f(-2) = f(-2, 3) + f(-2, 4)

For x = 1:

f(1) = f(1, 3) + f(1, 4)

c. The marginal function of y:

To find the marginal function of y, we need to sum the joint probabilities over all possible x values for each y value.

For y = 3:

f(3) = f(-2, 3) + f(1, 3)

For y = 4:

f(4) = f(-2, 4) + f(1, 4)

d. To find f(x|y = 4), we can use the joint probability distribution function:

f(x|y = 4) = f(x, y) / f(y = 4)

We can substitute the values into the equation and calculate the probabilities based on the given joint probability distribution function.

User Klinky
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories