To solve the problem, we'll use the complete-mixing model for gas separation. The key equations are:
For the permeate flow rate (Qp):
Qp = Ap * Pp / (RT)
For the reject flow rate (Qr):
Qr = Ar * Pr / (RT)
For the total flow rate (Qt):
Qt = Qp + Qr
For the permeate compositions (XpA, XpB, XpC):
XpA = (Qp / Qt) * XfA
XpB = (Qp / Qt) * XfB
XpC = (Qp / Qt) * XfC
For the reject compositions (XrA, XrB, XrC):
XrA = XfA - XpA
XrB = XfB - XpB
XrC = XfC - XpC
For the permeability-corrected permeate flow rate (Qp_prime):
Qp_prime = Qp / (PA' * (Pf - Pp))
For the membrane area (A):
A = Qp_prime / (YP - XpA)
Now let's calculate the values step by step:
Given:
XfA = 0.30
XfB = 0.45
XfC = 0.25
Pf = 300 cmHg
Pp = 30 cmHg
YP (initial guess) = 0.45
Ap = Ar (unknown)
Pr = Pf - Pp = 270 cmHg
R = 82.06 cm³ cmHg / (mol K)
T = 273 K
Calculate the total flow rate (Qt):
Qt = 2.0×104 cm³ (STP)/s
Calculate the permeate flow rate (Qp):
Qp = Qt * 0.50 = 1.0×104 cm³ (STP)/s
Calculate the reject flow rate (Qr):
Qr = Qt - Qp = 1.0×104 cm³ (STP)/s
Calculate the permeate compositions (XpA, XpB, XpC):
XpA = (Qp / Qt) * XfA
XpB = (Qp / Qt) * XfB
XpC = (Qp / Qt) * XfC
XpA = (1.0×104 cm³ (STP)/s / 2.0×104 cm³ (STP)/s) * 0.30 = 0.15
XpB = (1.0×104 cm³ (STP)/s / 2.0×104 cm³ (STP)/s) * 0.45 = 0.225
XpC = (1.0×104 cm³ (STP)/s / 2.0×104 cm³ (STP)/s) * 0.25 = 0.125
Calculate the reject compositions (XrA, XrB, XrC):
XrA = XfA - XpA
XrB = XfB - XpB
XrC = XfC - XpC
XrA = 0.30 - 0.15 = 0.15
XrB = 0.45 - 0.225 = 0.225
XrC = 0.25 - 0.125