3.7k views
2 votes
1. What are the maximum and minimum values for f(x) = -2 sin(3 x - pi) + 7

Need asap!

User Wjatek
by
7.9k points

1 Answer

4 votes

Answer:

The maximum value of the function f(x) = -2 sin(3 x - pi) + 7 is 9, and the minimum value is 5.

Step-by-step explanation: The function f(x) = -2 sin(3 x - pi) + 7 is a sinusoidal function with an amplitude of 2, a period of 2π/3, a phase shift of π/3 to the right, and a vertical shift of 7 units up.

To find the maximum and minimum values of the function, we need to find the maximum and minimum values of the sinusoidal part of the function, which is -2 sin(3 x - pi). The maximum value of sin(3 x - pi) is 1, and the minimum value is -1. Therefore, the maximum value of -2 sin(3 x - pi) is -2 times the minimum value of sin(3 x - pi), which is -2(-1) = 2. The minimum value of -2 sin(3 x - pi) is -2 times the maximum value of sin(3 x - pi), which is -2(1) = -2.

To find the maximum and minimum values of the function f(x) = -2 sin(3 x - pi) + 7, we need to add 7 to the maximum and minimum values of -2 sin(3 x - pi). Therefore, the maximum value of f(x) is 7 + 2 = 9, and the minimum value of f(x) is 7 - 2 = 5.

User Patrick Perini
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories