Sure! Let's draw the Finite Automaton for each of the two regular definitions.
1. SNUM → (-+)? [0-9]²(E [0-9]+)?
The Finite Automaton for the regular definition SNUM can be represented as follows:
```
┌───────┐ ┌───┐ ┌───────┐ ┌───────────┐ ┌───────┐
│ │ │ │ │ │ │ │ │ │
│ Start ├────►-+ ├────► [0-9] ├────► [0-9]+ │────► E │
│ │ │ │ │ │ │ │ │ │
└───────┘ └───┘ └───────┘ └───────────┘ └───────┘
```
Here, "Start" represents the starting state, "-+" represents the optional sign character (- or +), `[0-9]` represents any digit, `[0-9]+` represents one or more digits, and "E" represents the letter 'E'.
2. SID → [A-Z] [a-z]* LOGIC | # | < | <= | > | >=
The Finite Automaton for the regular definition SID can be represented as follows:
```
┌───────────┐
│ │
┌───┼─[A-Z]────►├───┐
│ │ │ │
│ └────┬──────┘ │
│ │ │
│ │ │
│ ▼ │
│ ┌───────┐ ┌──▼─┐ ┌─────┐
│ │ │ │ │ │ │
└──► LOGIC ├────► # ├────► < │
│ │ │ │ │ │
└───────┘ └────┘ └─────┘
```
Here, `[A-Z]` represents any uppercase letter, `[a-z]*` represents zero or more lowercase letters, "LOGIC" represents logical operators, "#", "<", "<=", ">", and ">=" represent the respective symbols.
These Finite Automata visually represent the transitions between states based on the input characters and help understand the structure of the regular definitions.