5.3k views
5 votes
Consider the alphabet {a-z, A-Z, 0-9, -, E} and the following regular defi SNUM → (-+)? [0-9]²(E [0-9]+)? note the first is the sign character SID → [A-Z] [a-z]* LOGIC | # | < | <=| > | >= 1- Draw the Finite Automaton for each of the two regular definition.

User Touch
by
7.7k points

1 Answer

3 votes
Sure! Let's draw the Finite Automaton for each of the two regular definitions.

1. SNUM → (-+)? [0-9]²(E [0-9]+)?

The Finite Automaton for the regular definition SNUM can be represented as follows:

```
┌───────┐ ┌───┐ ┌───────┐ ┌───────────┐ ┌───────┐
│ │ │ │ │ │ │ │ │ │
│ Start ├────►-+ ├────► [0-9] ├────► [0-9]+ │────► E │
│ │ │ │ │ │ │ │ │ │
└───────┘ └───┘ └───────┘ └───────────┘ └───────┘
```

Here, "Start" represents the starting state, "-+" represents the optional sign character (- or +), `[0-9]` represents any digit, `[0-9]+` represents one or more digits, and "E" represents the letter 'E'.

2. SID → [A-Z] [a-z]* LOGIC | # | < | <= | > | >=

The Finite Automaton for the regular definition SID can be represented as follows:

```
┌───────────┐
│ │
┌───┼─[A-Z]────►├───┐
│ │ │ │
│ └────┬──────┘ │
│ │ │
│ │ │
│ ▼ │
│ ┌───────┐ ┌──▼─┐ ┌─────┐
│ │ │ │ │ │ │
└──► LOGIC ├────► # ├────► < │
│ │ │ │ │ │
└───────┘ └────┘ └─────┘
```

Here, `[A-Z]` represents any uppercase letter, `[a-z]*` represents zero or more lowercase letters, "LOGIC" represents logical operators, "#", "<", "<=", ">", and ">=" represent the respective symbols.

These Finite Automata visually represent the transitions between states based on the input characters and help understand the structure of the regular definitions.
User Amrita
by
7.6k points