154k views
4 votes
Find the solution of the following initial value problem. y" + 8y + 15y = 0 y(0) = 10, y'(0) = -36 NOTE: Use t as the independent variable. y(t) =

User SpkingR
by
8.2k points

1 Answer

3 votes

Answer:


y(t)=7e^(-3t)+3e^(-5t)

Explanation:

Solve the given initial-value problem.


y

(1) - Form and solve the characteristic equation for "m"


y

(2) - Form the general solution


\boxed{\left\begin{array}{ccc}\text{\underline{Solutions to Higher-order DE's:}}\\\\\text{Real,distinct roots} \rightarrow y=c_1e^(m_1t)+c_2e^(m_2t)+...+c_ne^(m_nt)\\\\ \text{Duplicate roots} \rightarrow y=c_1e^(mt)+c_2te^(mt)+...+c_nt^ne^(mt)\\\\ \text{Complex roots} \rightarrow y=c_1e^(\alpha t)\cos(\beta t)+c_2e^(\alpha t)\sin(\beta t)+... \ ;m=\alpha \pm \beta i\end{array}\right}

The roots are real and distinct, so we can form the general solution as:


\therefore y=c_1e^(-3t)+c_2e^(-5t)

(3) - Now use the given initial conditions to determine the values for the arbitrary constants c_1 and c_2


y=c_1e^(-3t)+c_2e^(-5t); \ \text{Recall} \rightarrow \ y(0) = 10, \ y'(0) = -36\\\\\\y=c_1e^(-3t)+c_2e^(-5t)\\\\y'=-3c_1e^(-3t)-5c_2e^(-5t)\\\\\text{Plugging in the initial conditions:}\\ \Longrightarrow \left\{\begin{array}{cc}10=c_1+c_2\\-36=-3c_1-5c_2\end{array}\right\\\\\\\text{After solving the system we get:} \ \boxed{c_1=7, \ c_2=3}

(4) - Now we can form the solution


\therefore \boxed{\boxed{y(t)=7e^(-3t)+3e^(-5t)}}

User Nvkrj
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories