195k views
4 votes
Could you find the solution for this problem that will result to the correct answer shown:

Obtain the output for t = 2.62, for the differential equation y''(t) - y(t) = 3.9cos(t); y(0) = 0, y'(0) = 3.9.

User Domnantas
by
8.3k points

1 Answer

5 votes

Given differential equation:y''(t) - y(t) = 3.9cos(t); y(0) = 0, y'(0) = 3.9.Solution: The auxiliary equation is:r2 - 1 = 0⇒ r2 = 1⇒ r = ±1.Therefore, the complementary function is:yc(t) = C1et + C2e-t,where C1 and C2 are constants.Particular integral:For particular integral, we have to find the particular solution of the given differential equation.Assume the particular solution of the form: yp(t) = A cos t + B sin tSubstituting this value in the given differential equation, we get:A = 0 and B = -3.9/2Therefore, the particular integral is: yp(t) = -3.9/2 sin(t)The general solution of the given differential equation is: y(t) = yc(t) + yp(t)⇒ y(t) = C1et + C2e-t - 3.9/2 sin(t)Applying initial conditions:Given y(0) = 0, we get:C1 + C2 = 0⇒ C2 = -C1.Given y'(0) = 3.9, we get:C1 - C2 = 3.9⇒ C1 - (-C1) = 3.9⇒ 2C1 = 3.9⇒ C1 = 1.95Therefore, C2 = -1.95The required solution is:y(t) = 1.95et - 1.95e-t - 3.9/2 sin(t)Putting t = 2.62, we get:y(2.62) = 5.9757Ans: The output for t = 2.62 is 5.9757.Conclusion:In this problem, we have found the output for t = 2.62 for the given differential equation using the method of particular solution.

User Matt Bryant
by
9.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories