Answer:
To solve this problem, we can use linear programming. Let x1, x2, x3, and x4 be the number of cars shipped from Millville to Camden, Millville to Atlantic City, Trenton to Camden, and Trenton to Atlantic City, respectively. Our objective is to minimize the cost, which can be expressed as:
50x1 + 40x2 + 60x3 + 55x4
Subject to the following constraints:
x1 + x2 <= 15 (Millville) x3 + x4 <= 10 (Trenton) x1 + x3 = 10 (Camden) x2 + x4 = 12 (Atlantic City)
The first two constraints ensure that we do not ship more cars than are available at each warehouse. The third and fourth constraints ensure that we deliver the required number of cars to each dealership.
Solving this system of equations, we get x1 = 10, x2 = 2, x3 = 0, and x4 = 10. Therefore, the dealer should ship 10 cars from Millville to Camden, 2 cars from Millville to Atlantic City, 0 cars from Trenton to Camden, and 10 cars from Trenton to Atlantic City, for a total cost of 5010 + 402 + 600 + 5510 = $1170.
Explanation: