To determine the validity of each argument using the indirect method, we will assume the negation of the conclusion and try to derive a contradiction. If we can derive a contradiction, then the original argument is valid. If not, the argument is invalid.
G⊃(I∨D)
I⋅D⊃B
∼G⊃B
Assume ∼(∼G⊃B) (negation of the conclusion): G∧∼B
G (Assumption)
G⊃(I∨D) (Premise 1)
I∨D (Modus Ponens 1, 2)
I∨D⊃B (Premise 2)
B (Modus Ponens 3, 4)
∼B (Simplification 5, 2nd conjunct)
B∧∼B (Conjunction 5, 6)
∼G (Reductio ad absurdum 1-7)
G∧∼G (Conjunction 1, 8)
Since we derived a contradiction, the assumption ∼(∼G⊃B) leads to an inconsistency. Therefore, the argument is valid. The conclusion ∼G⊃B holds.
(∼J∙∼K)
L⊃J
M⊃K
M⊃∼L
∼(N∙O)
∼N
Assume ∼∼N (negation of the conclusion): N
(∼J∙∼K) (Premise 1)
L⊃J (Premise 2)
M⊃K (Premise 3)
M⊃∼L (Premise 4)
∼(N∙O) (Premise 5)
N (Assumption)
N∙O (Conjunction 6, 5)
∼(N∙O) (Premise 5)
N∙O∧∼(N∙O) (Conjunction 7, 8)
∼N (Reductio ad absurdum 6-9)
N∧∼N (Conjunction 6, 10)
Since we derived a contradiction, the assumption ∼∼N (N) leads to an inconsistency. Therefore, the argument is valid. The conclusion ∼N holds.
∼(O⋅Z)⊃(M∼A)
M⊃R
Z≡∼O
∼O⊃∼R∨A
∼O≡∼R
Assume ∼(∼O≡∼R) (negation of the conclusion): ∼O∧R
∼(O⋅Z)⊃(M∼A) (Premise 1)
M⊃R (Premise 2)
Z≡∼O (Premise 3)
∼O⊃∼R∨A (Premise 4)
∼O≡∼R (Assumption)
∼O∧R (Assumption)
∼O (Simplification 6)
∼R