Final answer:
To find the Taylor polynomials of degree 2 and 3 for the function g near 8, substitute the given derivatives into the formula. Then, to approximate g(8.1), plug in the value of x into the polynomials. P2(x) = -4 + 3(x - 8) - 4(x - 8)^2 / 2 and P3(x) = -4 + 3(x - 8) - 4(x - 8)^2 / 2 + 4(x - 8)^3 / 3!
Step-by-step explanation:
To find the Taylor polynomials of degree 2 and 3 for the function g near 8, we can use the formula:
P_n(x) = g(a) + g'(a)(x - a) + g''(a)(x - a)^2 + ... + g^n(a)(x - a)^n / n!
(a) To find P2(x), substitute a=8 and the given derivatives into the formula:
P2(x) = g(8) + g'(8)(x - 8) + g''(8)(x - 8)^2 / 2!
Substituting the given values into this formula, we get P2(x) = -4 + 3(x - 8) - 4(x - 8)^2 / 2.
(b) To find P3(x), substitute a=8 and the given derivatives into the formula:
P3(x) = g(8) + g'(8)(x - 8) + g''(8)(x - 8)^2 / 2 + g'''(8)(x - 8)^3 / 3!
Substituting the given values into this formula, we get P3(x) = -4 + 3(x - 8) - 4(x - 8)^2 / 2 + 4(x - 8)^3 / 3!
(c) To approximate g(8.1) using P2(x) and P3(x), substitute x=8.1 into each polynomial:
With P2, g(8.1) ≈ -4 + 3(8.1 - 8) - 4(8.1 - 8)^2 / 2.
With P3, g(8.1) ≈ -4 + 3(8.1 - 8) - 4(8.1 - 8)^2 / 2 + 4(8.1 - 8)^3 / 3!