Answer:
Explanation:
To find the Cartesian coordinates of points given in polar coordinates, we can use the following conversions:
x = r * cos(theta)
y = r * sin(theta)
Let's apply these formulas to each point:
a. (2, 4π/3):
Using the conversion formulas, we have:
x = 2 * cos(4π/3) = 2 * (-1/2) = -1
y = 2 * sin(4π/3) = 2 * (√3/2) = √3
Therefore, the Cartesian coordinates of the point (2, 4π/3) are (-1, √3).
b. (1, 0):
Using the conversion formulas, we have:
x = 1 * cos(0) = 1 * 1 = 1
y = 1 * sin(0) = 1 * 0 = 0
Therefore, the Cartesian coordinates of the point (1, 0) are (1, 0).
c. (0, 3π):
Using the conversion formulas, we have:
x = 0 * cos(3π) = 0 * (-1) = 0
y = 0 * sin(3π) = 0 * 0 = 0
Therefore, the Cartesian coordinates of the point (0, 3π) are (0, 0).
d. (-2, 4π/3):
Using the conversion formulas, we have:
x = -2 * cos(4π/3) = -2 * (-1/2) = 1
y = -2 * sin(4π/3) = -2 * (√3/2) = -√3
Therefore, the Cartesian coordinates of the point (-2, 4π/3) are (1, -√3).