Answer:
(-3/2, -13/2)
Explanation:
To solve the system of equations graphically, we need to plot the two equations on the same set of axes and find the point of intersection.
To plot the first equation y = x - 5, we can start by finding the y-intercept, which is -5. Then, we can use the slope of 1 (since the coefficient of x is 1) to find other points on the line. For example, if we move one unit to the right (in the positive x direction), we will move one unit up (in the positive y direction) and get the point (1, -4). Similarly, if we move two units to the left (in the negative x direction), we will move two units down (in the negative y direction) and get the point (-2, -7). We can plot these points and connect them with a straight line to get the graph of the first equation.
To plot the second equation y = -x - 8, we can follow a similar process. The y-intercept is -8, and the slope is -1 (since the coefficient of x is -1). If we move one unit to the right, we will move one unit down and get the point (1, -9). If we move two units to the left, we will move two units up and get the point (-2, -6). We can plot these points and connect them with a straight line to get the graph of the second equation.
The point of intersection of these two lines is the solution to the system of equations. We can estimate the coordinates of this point by looking at the graph, or we can use algebraic methods to find the exact solution. One way to do this is to set the two equations equal to each other and solve for x:
x - 5 = -x - 8 2x = -3 x = -3/2
Then, we can plug this value of x into either equation to find the corresponding value of y:
y = (-3/2) - 5 y = -13/2
So the solution to the system of equations is (-3/2, -13/2).