161k views
3 votes
What is the solution to the equation:

5(n - 1/10) = 1/2
a. n= 13/5
b. n= 3/25
c. n= 0
d. n= 1/5

2 Answers

3 votes

To solve the equation
\sf 5(n - (1)/(10)) = (1)/(2) \\ for
\sf n \\, we can follow these steps:

Step 1: Distribute the 5 on the left side:


\sf 5n - (1)/(2) = (1)/(2) \\

Step 2: Add
\sf (1)/(2) \\ to both sides of the equation:


\sf 5n = (1)/(2) + (1)/(2) \\


\sf 5n = 1 \\

Step 3: Divide both sides of the equation by 5 to isolate
\sf n \\:


\sf (5n)/(5) = (1)/(5) \\


\sf n = (1)/(5) \\

Therefore, the solution to the equation
\sf 5(n - (1)/(10))\ = (1)/(2) \\ is
\sf n = (1)/(5) \\, which corresponds to option (d).


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}

User Keosha
by
8.4k points
5 votes

SolutioN:-


\sf \longrightarrow \: 5 \bigg( \: n - (1)/(10) \bigg) = (1)/(2) \\


\sf \longrightarrow \: 5 \bigg( \: (n)/(1) - (1)/(10) \bigg) = (1)/(2) \\


\sf \longrightarrow \: 5 \bigg( \: (10 * n - 1 * 1)/(1 * 10) \bigg) = (1)/(2) \\


\sf \longrightarrow \: 5 \bigg( \: (10n - 1)/( 10) \bigg) = (1)/(2) \\


\sf \longrightarrow \: \: (50n - 5)/( 10) = (1)/(2) \\


\sf \longrightarrow \: \: 2(50n - 5) =1(10) \\


\sf \longrightarrow \: \: 2(50n - 5) =10 \\


\sf \longrightarrow \: \: 100n - 10=10 \\


\sf \longrightarrow \: \: 100n =10 + 10\\


\sf \longrightarrow \: \: 100n =20\\


\sf \longrightarrow \: \:n = \frac{2 \cancel{0}}{10 \cancel{0}} \\


\sf \longrightarrow \: \:n = (1)/(5) \\

Answer:-

  • Answer:- D) n = ⅕ ✅
User Stefon
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories