4.1k views
4 votes
The value of (x-a)³+(x-b)³+(x-c)³-3(x-a)(x-b)(x-c) when a+b+c=3x is:

a) 1
b) 2
c) 3
d) 0

User Figurassa
by
8.2k points

1 Answer

0 votes

Given expression is (x-a)³+(x-b)³+(x-c)³-3(x-a)(x-b)(x-c)

We know that,

(a+b+c)³ = a³ + b³ + c³ + 3(a+b)(b+c)(c+a) ------------(i)

Expanding (a+b+c)³, we get

a³ + b³ + c³ + 3(a²b+a²c+b²a+b²c+c²a+c²b) + 6abc

Given a+b+c=3x, substituting in above equation, we get

a³ + b³ + c³ + 9(ab+bc+ca) - 6abc = 27x³ ------------(ii)

Now, expanding given expression, we get

(x-a)³+(x-b)³+(x-c)³-3(x-a)(x-b)(x-c)

x³ - 3x²(a+b+c) + 3x(ab+bc+ca) - (a³+b³+c³-3abc)

Given a+b+c=3x, substituting in above equation, we get

x³ - 9x³ + 9x³ - (a³+b³+c³-3abc)

= -8x³ + (a³+b³+c³+3abc)

Now, using equation (ii), we get

-8x³ + 27x³ - 3(a³+b³+c³-3abc)

= 19x³ + 9abc

Therefore, the given expression is equal to 19x³ + 9abc.

Given a+b+c=3x, we have abc ≤ x³. Hence, the minimum value of 9abc is 9x³.

Substituting this value in above equation, we get

19x³ + 9abc ≥ 19x³ + 9x³ = 28x³

Therefore, the minimum value of given expression is 28x³.

Hence, the correct answer is d) 0.

User Cooncesean
by
8.0k points

No related questions found