4.1k views
4 votes
The value of (x-a)³+(x-b)³+(x-c)³-3(x-a)(x-b)(x-c) when a+b+c=3x is:

a) 1
b) 2
c) 3
d) 0

User Figurassa
by
8.2k points

1 Answer

0 votes

Given expression is (x-a)³+(x-b)³+(x-c)³-3(x-a)(x-b)(x-c)

We know that,

(a+b+c)³ = a³ + b³ + c³ + 3(a+b)(b+c)(c+a) ------------(i)

Expanding (a+b+c)³, we get

a³ + b³ + c³ + 3(a²b+a²c+b²a+b²c+c²a+c²b) + 6abc

Given a+b+c=3x, substituting in above equation, we get

a³ + b³ + c³ + 9(ab+bc+ca) - 6abc = 27x³ ------------(ii)

Now, expanding given expression, we get

(x-a)³+(x-b)³+(x-c)³-3(x-a)(x-b)(x-c)

x³ - 3x²(a+b+c) + 3x(ab+bc+ca) - (a³+b³+c³-3abc)

Given a+b+c=3x, substituting in above equation, we get

x³ - 9x³ + 9x³ - (a³+b³+c³-3abc)

= -8x³ + (a³+b³+c³+3abc)

Now, using equation (ii), we get

-8x³ + 27x³ - 3(a³+b³+c³-3abc)

= 19x³ + 9abc

Therefore, the given expression is equal to 19x³ + 9abc.

Given a+b+c=3x, we have abc ≤ x³. Hence, the minimum value of 9abc is 9x³.

Substituting this value in above equation, we get

19x³ + 9abc ≥ 19x³ + 9x³ = 28x³

Therefore, the minimum value of given expression is 28x³.

Hence, the correct answer is d) 0.

User Cooncesean
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.