Answer:
f'(x) = [ 3(cos(√x) - In(x^2))^2 (-√x sin(√x) - 4) ] / 2x
Explanation:
f(x) = y = (cos(√x) - In(x^2))^3
Let u = cos(√x) - In(x^2)
dy/du = 3u^2
= 3(cos(√x) - In(x^2))^2
du/dx = -sin(√x)*1/2x^-1/2 - 2x* 1/x^2
= -sin(√x) * 1/2√x - 2/x
= (-√x sin(√x) - 4)/ 2x
So:
dy/dx = dy/du * du /dx
f'(x) = [ 3(cos(√x) - In(x^2))^2 (-√x sin(√x) - 4) ] / 2x