To simplify the product √(5x²) • √(15x²) when x ≥ 0, we can combine the square roots and simplify the expression.
√(5x²) • √(15x²) = √(5x² * 15x²)
Using the property of square roots that √(a * b) = √a * √b, we can simplify further:
√(5x² * 15x²) = √(5 * 15 * x² * x²)
Next, we simplify the numerical part:
√(5 * 15 * x² * x²) = √(75 * x² * x²)
Since x ≥ 0, x² is always non-negative, so we can remove the square root:
√(75 * x² * x²) = x * x * √75
Finally, we simplify the square root of 75:
x * x * √75 = x² * √75
Therefore, the equivalent expression is x² * √75 when x ≥ 0.