64.0k views
4 votes
Let A = {{1},2,3} and B = {a,b,c}. Determine the following and prove one of your choice. 1. (AUB) CA. 2. AC (AUB). 3. P(A) = P(B). 4. (A × B) ≤ P(A × B). 5. (A × B) ≤ P(A) × P(B).

User Rake
by
7.9k points

1 Answer

5 votes

To answer these questions, you need to use some set operations and notation. Here are some definitions and examples:

- The union of two sets A and B, written A ∪ B, is the set of all elements that are in either A or B. For example, {1, 2, 3} ∪ {2, 4, 5} = {1, 2, 3, 4, 5}.

- The intersection of two sets A and B, written A ∩ B, is the set of all elements that are in both A and B. For example, {1, 2, 3} ∩ {2, 4, 5} = {2}.

- The complement of a set A with respect to a universal set U, written Ac or U - A, is the set of all elements in U that are not in A. For example, if U = {1, 2, 3, 4, 5}, then {1, 2, 3}c = {4, 5}.

- The difference of two sets A and B, written A - B or A \ B, is the set of all elements in A that are not in B. For example, {1, 2, 3} - {2, 4, 5} = {1, 3}.

- The Cartesian product of two sets A and B, written A × B, is the set of all ordered pairs (a,b) where a ∈ A and b ∈ B. For example, {1, 2} × {a,b} = {(1,a), (1,b), (2,a), (2,b)}.

- The power set of a set A, written P(A), is the set of all subsets of A. For example, P({1, 2}) = {∅,{1},{2},{1,2}}.

Now let's use these definitions to answer your questions. Let A = {{1},2,3} and B = {a,b,c}. Then:

1. (AUB) CA = ({1},2,a,b,c) - {{1},2} = (a,b,c)

2. AC (AUB) = {{1},3} ∩ ({1},2,a,b,c) = {{1},3}

3. P(A) = P(B) means that the power sets of A and B are equal. This is false because P(A) has eight elements while P(B) has only four elements.

4. (A × B) ≤ P(A × B) means that the Cartesian product of A and B is a subset of the power set of A × B. This is true because every element of A × B is also a subset of itself and hence belongs to P(A × B).

5. (A × B) ≤ P(A) × P(B) means that the Cartesian product of A and B is a subset of the Cartesian product of the power sets of A and B. This is false because there are some elements in P(A) × P(B) that are not in A × B. For example, ({∅},{a}) ∈ P(A) × P(B) but not in A × B.

To prove one of these statements formally, we need to use some logical rules and axioms. I will prove statement 4 as an example.

Proof: Let x be an arbitrary element of A × B. Then x = (a,b) for some a ∈ A and b ∈ B. By definition of subset, x ∈ x. By definition of power set, x ∈ P(A × B). Therefore x ∈ (A × B) implies x ∈ P(A × B). Since x was arbitrary, this holds for any element of A × B. Hence (A × B) ≤ P(A × B). QED.

User Saret
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories