Answer:
From the limit expression √29+h-√29 lim h-0 h, we can simplify the numerator as:
√(29+h) - √29 = (√(29+h) - √29)(√(29+h) + √29)/(√(29+h) + √29)
= (29+h - 29)/(√(29+h) + √29)
= h/(√(29+h) + √29)
Thus the limit expression becomes:
lim h->0 h/(√(29+h) + √29)
To simplify this expression further, we can multiply the numerator and denominator by the conjugate of the denominator, which is (√(29+h) - √29):
lim h->0 h/(√(29+h) + √29) * (√(29+h) - √29)/(√(29+h) - √29)
= lim h->0 h(√(29+h) - √29)/((29+h) - 29)
= lim h->0 (√(29+h) - √29)/h
This is now in the form of a derivative, specifically the derivative of f(x) = √x evaluated at x = 29. Therefore, we can take f(x) = √x and a = 29, and the limit is the slope of the tangent line to the curve y = √x at x = 29.
To determine the value of the limit, we can use the definition of the derivative:
f'(29) = lim h->0 (f(29+h) - f(29))/h = lim h->0 (√(29+h) - √29)/h
This is the same limit expression we derived earlier. Therefore, f(x) = √x and a = 29, and the limit is f'(29) = lim h->0 (√(29+h) - √29)/h.
To calculate the limit, we can plug in h = 0 and simplify:
lim h->0 (√(29+h) - √29)/h
= lim h->0 ((√(29+h) - √29)/(h))(1/1)
= f'(29)
= 1/(2√29)
Thus, the function f(x) = √x and the number a = 29, and the limit is 1/(2√29).