101k views
4 votes
(1/(\sqrt{a}-3)+1/(\sqrt{a} +3))*(1-3/(\sqrt{a} ))

1 Answer

4 votes

Answer:


(2(√(a) - 3))/(a - 9)

Explanation:


((1)/(√(a)-3)+(1)/(√(a) +3)) * (1 - (3)/(√(a))) =


= (1)/(√(a)-3) +(1)/(√(a) +3)} - (3)/(√(a)(√(a)-3)) - (3)/(√(a)(√(a) +3))


= (√(a)(√(a)+3))/((√(a)-3)√(a)(√(a)+3))+(√(a)(√(a)-3))/((√(a) +3)√(a)(√(a)-3))


~~~~~- (3(√(a)+3))/(√(a)(√(a)-3)(√(a)+3))-(3(√(a)-3))/(√(a)(√(a) +3)(√(a)-3))


= (a + 3√(a) + a - 3√(a) - 3√(a) - 9 - 3√(a) + 9)/(√(a)(√(a) +3)(√(a)-3))


= (2a - 6√(a))/(√(a)(√(a) +3)(√(a)-3))


= (2(a - 3√(a))/((a - 9)√(a))


= (2(√(a)√(a) - 3√(a))/((a - 9)√(a))


= (2√(a)(√(a) - 3))/((a - 9)√(a))


= (2(√(a) - 3))/(a - 9)

User Quantumflash
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.