71.3k views
3 votes
Simplify (1-cos x)(1+cos x)

2 Answers

6 votes

To simplify the expression
\sf\:(1-\cos x)(1+\cos x)\\, follow these steps:

Step 1: Apply the distributive property.


\longrightarrow\sf\:(1-\cos x)(1+\cos x) = 1 \cdot 1 + 1 \cdot \\
\sf\: \cos x -\cos x \cdot 1 - \cos x \cdot \cos x\\

Step 2: Simplify the terms.


\longrightarrow\sf\:1 + \cos x - \cos x - \cos^2 x\\

Step 3: Combine like terms.


\longrightarrow\sf\:1 - \cos^2 x\\

Step 4: Apply the identity
\sf\:\cos^2 x = 1 - \sin^2 x\\.


\sf\:1 - (1 - \sin^2 x)\\

Step 5: Simplify further.


\longrightarrow\sf\:1 - 1 + \sin^2 x\\

Step 6: Final result.


\sf\red\bigstar{\boxed{\sin^2 x}}\\


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\textcolor{red}{\underline{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}

User Kmiyashiro
by
7.8k points
4 votes

Answer:


sin^2x

Explanation:

To simplify the expression (1 - cos x)(1 + cos x), we can use the difference of squares identity, which states that
a^2 - b^2 = (a + b)(a - b).

Let's apply this identity to the given expression:


(1 - cos x)(1 + cos x) = 1^2 - (cos x)^2

Now, we can simplify further by using the trigonometric identity
cos^2(x) + sin^2(x) = 1. By rearranging this identity, we have
cos^2(x) = 1 - sin^2(x).

Substituting this into our expression, we get:


1^2 - (cos x)^2 = 1 - (1 - sin^2(x))

Simplifying further:


1 - (1 - sin^2(x)) = 1 - 1 + sin^2(x)

Finally, we get the simplified expression:


(1 - cos x)(1 + cos x) = sin^2(x)

User Darrin
by
8.1k points

No related questions found