152k views
3 votes
How do I solve for this?

How do I solve for this?-example-1

1 Answer

3 votes

Given information: $\sf\:\csc(x) = 8$, $90° < x < 180° \\$

To find $\sf\:\sin(\frac{x}{2}) \\$, $\sf\:\cos(\frac{x}{2}) \\$, and $\sf\:\tan(\frac{x}{2}) \\$:

Step 1: Rewrite the given information:

$\sf\:\csc(x) = \frac{1}{\sin(x)} = 8 \\$

Step 2: Solve for $\sf\:\sin(x) \\$:

$\sf\:\sin(x) = \frac{1}{8} \\$

Step 3: Use the half-angle identity for $\sf\:\sin(\frac{x}{2}) \\$:

$\sf\:\sin(\frac{x}{2}) = \pm \sqrt{\frac{1 - \cos(x)}{2}} \\$

Since $\sf\:90° < x < 180°$, $\sf\:\cos(x)$ will be negative, so we take the positive square root:

$\sf\:\sin(\frac{x}{2}) = \sqrt{\frac{1 - \cos(x)}{2}} \\$

Step 4: Find $\sf\:\cos(x)$ using the Pythagorean identity:

$\sf\:\sin^2(x) + \cos^2(x) = 1 \\$

Substituting $\sf\:\sin(x) = \frac{1}{8} \\$:

$\sf\:(\frac{1}{8})^2 + \cos^2(x) = 1 \\$

$\sf\:\frac{1}{64} + \cos^2(x) = 1 \\$

$\sf\:\cos^2(x) = 1 - \frac{1}{64} \\$

$\sf\:\cos^2(x) = \frac{63}{64} \\$

Taking the square root of both sides:

$\sf\:\cos(x) = \pm \sqrt{\frac{63}{64}} \\$

Since $\sf\:90° < x < 180°$, $\sf\:\cos(x)$ will be negative, so we take the negative square root:

$\sf\:\cos(x) = -\sqrt{\frac{63}{64}} \\$

Step 5: Use the half-angle identity for $\sf\:\cos(\frac{x}{2})$:

$\sf\:\cos(\frac{x}{2}) = \pm \sqrt{\frac{1 + \cos(x)}{2}} \\$

Since $\sf\:90° < x < 180°$, $\sf\:\cos(x)$ will be negative, so we take the negative square root:

$\sf\:\cos(\frac{x}{2}) = -\sqrt{\frac{1 + \cos(x)}{2}} \\$

Step 6: Find $\sf\:\tan(\frac{x}{2}) \\$ using the identity $\sf\:\tan(\frac{x}{2}) = \frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})} \\$:

$\sf\:\tan(\frac{x}{2}) = \frac{\sqrt{\frac{1 - \cos(x)}{2}}}{-\sqrt{\frac{1 + \cos(x)}{2}}} \\$

Simplifying:

$\sf\:\tan(\frac{x}{2}) = -\sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}} \\$

Therefore, the values are:

$\sf\:\sin(\frac{x}{2}) = \sqrt{\frac{1 - \cos(x)}{2}} \\$

$\sf\:\cos(\frac{x}{2}) = -\sqrt{\frac{1 + \cos(x)}{2}} \\$

$\sf\:\tan(\frac{x}{2}) = -\sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}} \\$

Please note that the sign of the values may change depending on the actual value of $\sf\:\cos(x)$, which is negative in this case.


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\textcolor{red}{\underline{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}

User Hugemeow
by
7.9k points

No related questions found