152k views
3 votes
How do I solve for this?

How do I solve for this?-example-1

1 Answer

3 votes

Given information: $\sf\:\csc(x) = 8$, $90° < x < 180° \\$

To find $\sf\:\sin(\frac{x}{2}) \\$, $\sf\:\cos(\frac{x}{2}) \\$, and $\sf\:\tan(\frac{x}{2}) \\$:

Step 1: Rewrite the given information:

$\sf\:\csc(x) = \frac{1}{\sin(x)} = 8 \\$

Step 2: Solve for $\sf\:\sin(x) \\$:

$\sf\:\sin(x) = \frac{1}{8} \\$

Step 3: Use the half-angle identity for $\sf\:\sin(\frac{x}{2}) \\$:

$\sf\:\sin(\frac{x}{2}) = \pm \sqrt{\frac{1 - \cos(x)}{2}} \\$

Since $\sf\:90° < x < 180°$, $\sf\:\cos(x)$ will be negative, so we take the positive square root:

$\sf\:\sin(\frac{x}{2}) = \sqrt{\frac{1 - \cos(x)}{2}} \\$

Step 4: Find $\sf\:\cos(x)$ using the Pythagorean identity:

$\sf\:\sin^2(x) + \cos^2(x) = 1 \\$

Substituting $\sf\:\sin(x) = \frac{1}{8} \\$:

$\sf\:(\frac{1}{8})^2 + \cos^2(x) = 1 \\$

$\sf\:\frac{1}{64} + \cos^2(x) = 1 \\$

$\sf\:\cos^2(x) = 1 - \frac{1}{64} \\$

$\sf\:\cos^2(x) = \frac{63}{64} \\$

Taking the square root of both sides:

$\sf\:\cos(x) = \pm \sqrt{\frac{63}{64}} \\$

Since $\sf\:90° < x < 180°$, $\sf\:\cos(x)$ will be negative, so we take the negative square root:

$\sf\:\cos(x) = -\sqrt{\frac{63}{64}} \\$

Step 5: Use the half-angle identity for $\sf\:\cos(\frac{x}{2})$:

$\sf\:\cos(\frac{x}{2}) = \pm \sqrt{\frac{1 + \cos(x)}{2}} \\$

Since $\sf\:90° < x < 180°$, $\sf\:\cos(x)$ will be negative, so we take the negative square root:

$\sf\:\cos(\frac{x}{2}) = -\sqrt{\frac{1 + \cos(x)}{2}} \\$

Step 6: Find $\sf\:\tan(\frac{x}{2}) \\$ using the identity $\sf\:\tan(\frac{x}{2}) = \frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})} \\$:

$\sf\:\tan(\frac{x}{2}) = \frac{\sqrt{\frac{1 - \cos(x)}{2}}}{-\sqrt{\frac{1 + \cos(x)}{2}}} \\$

Simplifying:

$\sf\:\tan(\frac{x}{2}) = -\sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}} \\$

Therefore, the values are:

$\sf\:\sin(\frac{x}{2}) = \sqrt{\frac{1 - \cos(x)}{2}} \\$

$\sf\:\cos(\frac{x}{2}) = -\sqrt{\frac{1 + \cos(x)}{2}} \\$

$\sf\:\tan(\frac{x}{2}) = -\sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}} \\$

Please note that the sign of the values may change depending on the actual value of $\sf\:\cos(x)$, which is negative in this case.


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\textcolor{red}{\underline{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}

User Hugemeow
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories