Explanation:
The transformation y = sin(2x) affects the graph of y = sin(x) by compressing it horizontally.
The function y = sin(2x) has a coefficient of 2 in front of the x variable. This means that for every x value in the original function, the transformed function will have half the x value.
To see the effect of this transformation, let's compare the graphs of y = sin(x) and y = sin(2x) by plotting some points:
For y = sin(x):
x = 0, y = 0
x = π/2, y = 1
x = π, y = 0
x = 3π/2, y = -1
x = 2π, y = 0
For y = sin(2x):
x = 0, y = 0
x = π/2, y = 0
x = π, y = 0
x = 3π/2, y = 0
x = 2π, y = 0
As you can see, the y-values of the transformed function remain the same as the original function at every x-value, while the x-values of the transformed function are compressed by a factor of 2. This means that the graph of y = sin(2x) appears narrower or more "squeezed" horizontally compared to y = sin(x).
Therefore, the correct statement is: It is compressed horizontally.