137k views
1 vote
URGENT *EASY 10 POINTS* : Show steps to get the expression ln(sqrt(2) +1) - ln(1/sqrt(2)) equal to -ln(1-(1/sqrt2))

User Shacara
by
7.9k points

1 Answer

5 votes

Answer:

Explanation:

To show that the expression
\ln(√(2) + 1) - \ln\left((1)/(√(2))\right) is equal to
-\ln\left(1 - (1)/(√(2))\right), we can simplify both sides of the equation using the properties of logarithms. Here are the steps:

Step 1: Simplify the expression on the left side:


\ln(√(2) + 1) - \ln\left((1)/(√(2))\right)

Step 2: Apply the logarithmic property
\ln(a) - \ln(b) = \ln\left((a)/(b)\right) to combine the logarithms:


\ln\left((√(2) + 1)/((1)/(√(2)))\right)

Step 3: Simplify the expression within the logarithm:


\ln\left(((√(2) + 1))/(\left((1)/(√(2))\right))\right)

Step 4: Simplify the denominator by multiplying by the reciprocal:


\ln\left(((√(2) + 1))/(\left((1)/(√(2))\right)) \cdot √(2)\right)


\ln\left(((√(2) + 1) \cdot √(2))/(\left((1)/(√(2))\right) \cdot √(2))\right)


\ln\left(((√(2) + 1) \cdot √(2))/(1)\right)

Step 5: Simplify the numerator:


\ln\left(((√(2) + 1) \cdot √(2))/(1)\right)


\ln\left(√(2)(√(2) + 1)\right)


\ln\left(2 + √(2)\right)

Now, let's simplify the right side of the equation:

Step 1: Simplify the expression on the right side:


-\ln\left(1 - (1)/(√(2))\right)

Step 2: Simplify the expression within the logarithm:


-\ln\left((√(2) - 1)/(√(2))\right)

Step 3: Apply the logarithmic property
\ln\left((a)/(b)\right) = -\ln\left((b)/(a)\right) to switch the numerator and denominator:


-\ln\left((√(2))/(√(2) - 1)\right)

Step 4: Simplify the expression:


-\ln\left((√(2))/(√(2) - 1)\right)


-\ln\left((√(2)(√(2) + 1))/(1)\right)


-\ln\left(2 + √(2)\right)

As we can see, the expression
\ln(√(2) + 1) - \ln\left((1)/(√(2))\right) simplifies to
\ln(2 + √(2)), which is equal to
-\ln\left(1 - (1)/(√(2))\right).

User Neville Cook
by
7.6k points