Answer:
3 x y (y + x)
Explanation:
Factor the following:
(y + x)^3 - (y^3 + x^3)
Factor the sum of two cubes. y^3 + x^3 = (y + x) (y^2 - x y + x^2):
(y + x)^3 - ((y + x) (y^2 - x y + x^2))
Factor y + x out of (y + x)^3 - (y + x) (y^2 - x y + x^2), resulting in (y + x) ((y + x)^(3 - 1) - (y^2 - x y + x^2)):
(y + x) ((y + x)^(3 - 1) - (y^2 - x y + x^2))
3 - 1 = 2:
(y + x) ((y + x)^2 - (y^2 - x y + x^2))
(y + x) (y + x) = (x) (x) + (x) (y) + (y) (x) + (y) (y) = x^2 + x y + x y + y^2 = y^2 + 2 x y + x^2:
(y + x) ((y^2 + 2 x y + x^2) - (y^2 - x y + x^2))
-(y^2 - x y + x^2) = -y^2 + x y - x^2:
(y + x) (x^2 + 2 x y + y^2 + (-y^2 + x y - x^2))
Grouping like terms, y^2 - y^2 + 2 x y + x y + x^2 - x^2 = (2 x y + x y) + (y^2 - y^2) + (x^2 - x^2):
((2 x y + x y) + (y^2 - y^2) + (x^2 - x^2)) (y + x)
x y 2 + x y = x y×3:
(3 x y + (y^2 - y^2) + (x^2 - x^2)) (y + x)
y^2 - y^2 = 0:
(3 x y + (x^2 - x^2)) (y + x)
x^2 - x^2 = 0:
Answer: 3 x y (y + x)