Answer:

Explanation:
Given the function:

We can find the equation of its derivative using the quotient rule:

First, we should find the derivative of the function's numerator [which I will label
] and its denominator [which I will label
].
Numerator

↓ applying the power rule ...



Denominator

↓ applying the chain rule ...
![\left[\frac{}{}f(x)^n\frac{}{}\right]' = n\left[\frac{}{}f(x)\frac{}{}\right]^(n-1) \cdot f'(x)](https://img.qammunity.org/2024/formulas/mathematics/high-school/vhdo6bzucwrblqybnwikk3adm8ywrglfnl.png)

Next, we can plug these functions into the quotient rule.
![y' = \frac{(6-5x)^4 \left[\frac{}{} 9x^2 \frac{}{}\right] - 3x^3 \left[ \, -20(6-5x)^3\frac{}{}\right]}{((6-5x)^4)^2}](https://img.qammunity.org/2024/formulas/mathematics/high-school/jlm36age5wsc6ufxcpff3a8vwk9f7cqxsl.png)
↓ simplifying the exponent on the bottom ...

![y' = \frac{(6-5x)^4 \left[\frac{}{} 9x^2 \frac{}{}\right] - 3x^3 \left[ \, -20(6-5x)^3\frac{}{}\right]}{(6-5x)^8}](https://img.qammunity.org/2024/formulas/mathematics/high-school/7zj85zhb45gdxxxrv9jsaiw5lbxb2g3pcp.png)
↓ factoring
out of the numerator

↓ canceling
with the denominator


↓ applying the distributive property to
...


↓ combining like terms in the numerator
