121k views
4 votes
Differentiate the following function. y = 3x³ / (6-5x)⁴. dy/dx =

2 Answers

2 votes

Answer:


y' = (15x^3 + 54x^2)/((6-5x)^5)

Explanation:

Given the function:


y= (3x^3)/((6-5x)^4)

We can find the equation of its derivative using the quotient rule:


\left((f(x))/(g(x))\right)' = (g(x) \cdot f'(x) - f(x) \cdot g'(x))/((g(x))^2)

First, we should find the derivative of the function's numerator [which I will label
f(x) ] and its denominator [which I will label
g(x) ].

Numerator


f(x) = 3x^3

↓ applying the power rule ...
(x^a)' = ax^(a - 1)


f'(x) = 3 \cdot 3x^(3-1)


f'(x) = 9x^2

Denominator


g(x) = (6-5x)^4

↓ applying the chain rule ...
\left[\frac{}{}f(x)^n\frac{}{}\right]' = n\left[\frac{}{}f(x)\frac{}{}\right]^(n-1) \cdot f'(x)


g'(x) = -20(6-5x)^3

Next, we can plug these functions into the quotient rule.


y' = \frac{(6-5x)^4 \left[\frac{}{} 9x^2 \frac{}{}\right] - 3x^3 \left[ \, -20(6-5x)^3\frac{}{}\right]}{((6-5x)^4)^2}

↓ simplifying the exponent on the bottom ...
(x^a)^b = x^(a\,\cdot \,b)


y' = \frac{(6-5x)^4 \left[\frac{}{} 9x^2 \frac{}{}\right] - 3x^3 \left[ \, -20(6-5x)^3\frac{}{}\right]}{(6-5x)^8}

↓ factoring
(6-5x)^3 out of the numerator


y' = \frac{(6-5x)^3 \left(\frac{}{} 9x^2(6-5x) + 60x^3 \frac{}{}\right)}{(6-5x)^8}

↓ canceling
(6-5x)^3 with the denominator


y' = \frac{\left(\frac{}{} 9x^2(6-5x) + 60x^3 \frac{}{}\right)}{(6-5x)^(8\,-\,3)}


y' = (9x^2(6-5x) + 60x^3)/((6-5x)^5)

↓ applying the distributive property to
9x^2(6-5x) ...
A(B+C) = AB + AC


y' = ((54x^2-45x^3) + 60x^3)/((6-5x)^5)

↓ combining like terms in the numerator


\boxed{y' = (15x^3 + 54x^2)/((6-5x)^5)}

User Sunreef
by
8.1k points
3 votes

Answer:


\displaystyle (dy)/(dx)=(15x^3+54x^2)/((6-5x)^5)

Explanation:


\displaystyle y=(3x^3)/((6-5x)^4)\\\\(dy)/(dx)=((6-5x)^4(3x^3)'-(3x^3)((6-5x)^4)')/(((6-5x)^4)^2)\\\\(dy)/(dx)=(9x^2(6-5x)^4-(3x^3)(-20(6-5x)^3))/((6-5x)^8)\\\\(dy)/(dx)=(9x^2(6-5x)^4+60x^3(6-5x)^3)/((6-5x)^8)\\\\(dy)/(dx)=(9x^2(6-5x)+60x^3)/((6-5x)^5)\\\\(dy)/(dx)=(54x^2-45x^3+60x^3)/((6-5x)^5)\\\\(dy)/(dx)=(15x^3+54x^2)/((6-5x)^5)

Make sure to use quotient rule!

User Jamie Lindsey
by
8.5k points

Related questions

1 answer
5 votes
159k views
1 answer
0 votes
135k views