166k views
5 votes
The radius of the wheel on a car is 20 inches. If the wheel is revolving at 346 revolutions per minute, what is the linear speed of the car in miles per hour? Round your answer to the nearest tenth. P

User Dlu
by
7.7k points

1 Answer

2 votes

Answer:

131.9 mph

Explanation:

First, let's compute the circumference of the wheel, as this gives us the distance the car travels in one revolution of the wheel.

The formula for the circumference of a circle is C = 2πr, where r is the radius of the circle. Given that the radius of the wheel is 20 inches, we can calculate the circumference as follows:

C = 2π * 20 inches = 40π inches

This is the distance the car travels in one revolution of the wheel.

Given that the wheel is making 346 revolutions per minute, the car is moving at a rate of 346 * 40π inches per minute. That's 13840π inches per minute.

Now let's convert this speed to miles per hour.

There are 12 inches in a foot and 5280 feet in a mile. So, there are 12 * 5280 = 63360 inches in a mile.

To convert inches per minute to miles per hour, we first convert inches to miles by dividing by 63360, then convert minutes to hours by multiplying by 60.

So the speed in miles per hour is (13840π / 63360) * 60 ≈ 131.9 mph.

Rounding to the nearest tenth, the linear speed of the car is approximately 131.9 mph.

User Neelabh Singh
by
7.8k points