Answer:
Given:
- cos3A = 4cos³A - 3cosA
- cos(60°-A) = cos(60°+A) = 1/2
To Prove:
cosAcos(60°-A)cos(60°+A) = 1/4 cos3A
Solution:
Here are the steps in detail:
1. Expanding cosAcos(60°-A)cos(60°+A) using the product-to-sum identities:
=cosAcos(60°-A)cos(60°+A)
=(cosA)(cos(60°-A)cos(60°+A))
=(cosA)(1/2cos(60°-2A) + 1/2cos(60°+2A))
=(cosA)(1/2cos(-A) + 1/2cos(120°))
2. Substituting cos(60°-A) = cos(60°+A) = 1/2 into the expanded expression:
= cosA(1/2cos(-A) + 1/2cos(120°))
=cosA(1/2(1/2cosA) + 1/2(-1/2))
= cosA(1/4cosA - 1/4)
= (1/4)cosAcosA - (1/4)cosA
=(1/4)cos3A
3. Simplifying the resulting expression to obtain 1/4 cos3A:
=(1/4)cosAcosA - (1/4)cosA
=(1/4)cosA(cosA - 1)
=(1/4)cos3A
Therefore, we have proven that cosAcos(60°-A)cos(60°+A) = 1/4 cos3A. Hence Proved.