83.1k views
1 vote
find the distance between parallel lines and with equations y=3x 4 and y=3x−5, respectively. round your answer to the nearest hundredth.

User Dty
by
8.0k points

1 Answer

2 votes

Answer:

To find the distance between parallel lines, you can use the formula:

distance = |(c2 - c1)| / sqrt(a^2 + b^2)

Where the lines are represented in the form ax + by + c1 = 0 and ax + by + c2 = 0.

For the given equations:

Line 1: y = 3x + 4

Line 2: y = 3x - 5

We can rewrite the equations in the standard form:

Line 1: 3x - y + 4 = 0

Line 2: 3x - y + 5 = 0

Comparing the coefficients, we have:

a = 3

b = -1

c1 = 4

c2 = 5

Now we can calculate the distance:

distance = |(c2 - c1)| / sqrt(a^2 + b^2)

= |(5 - 4)| / sqrt(3^2 + (-1)^2)

= 1 / sqrt(9 + 1)

= 1 / sqrt(10)

≈ 0.316227766

Rounding the answer to the nearest hundredth, the distance between the parallel lines y = 3x + 4 and y = 3x - 5 is approximately 0.32

I hope that helped!!

User Xplane
by
8.7k points