Answer:
To solve the equation 12^(x + 1) = 79 for x, we need to isolate the exponent.
Step 1: Subtract 1 from both sides of the equation:
12^(x + 1) - 1 = 79 - 1
12^(x + 1) - 1 = 78
Step 2: Rewrite 12^(x + 1) as (12^x)(12^1) using the exponent property:
(12^x)(12) - 1 = 78
Step 3: Simplify the left side of the equation:
12(12^x) - 1 = 78
Step 4: Add 1 to both sides of the equation:
12(12^x) = 78 + 1
12(12^x) = 79
Step 5: Divide both sides of the equation by 12:
(12(12^x))/12 = 79/12
12^x = 79/12
Step 6: Take the logarithm (base 12) of both sides of the equation:
log12(12^x) = log12(79/12)
x = log12(79/12)
Therefore, the solution for x is x = log12(79/12)
Hope this helps!