A) The scatterplot of the data is as follows:What can we interpret from the scatterplot of the given data?We can observe that the higher the number of risk factors, the lower the IQ of the children. This fact is supported by the trend line that shows a negative correlation. This is what the plot is telling us.A regression equation is given by the formula: $y=\beta_0+\beta_1x$Where, $y$ is the IQ of the child, $x$ is the number of risk factors, $\beta_0$ is the y-intercept and $\beta_1$ is the slope of the line.Both $\beta_0$ and $\beta_1$ can be calculated using the following formulae: $$\beta_1=r_{xy}\frac{s_y}{s_x}$$$$\beta_0=\bar{y}-\beta_1\bar{x}$$Where, $r_{xy}$ is the correlation coefficient between $x$ and $y$, $s_x$ and $s_y$ are the standard deviations of $x$ and $y$ respectively, and $\bar{x}$ and $\bar{y}$ are the means of $x$ and $y$ respectively.From the scatterplot, we can observe that $r_{xy}$ is negative. Therefore, there exists a negative correlation between $x$ and $y$.Let us calculate the values of $\beta_1$, $\beta_0$ using the above formulae.$$r_{xy}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^2\sum(y-\bar{y})^2}}$$$$r_{xy}=\frac{(3)(112)+(6)(82)+(0)(105)+(5)(102)+(1)(115)+(1)(101)+(5)(94)+(4)(89)+(3)(98)+(3)(109)+(4)(91)+(2)(107)}{\sqrt{(3^2+6^2+0^2+5^2+1^2+1^2+5^2+4^2+3^2+3^2+4^2+2^2)(112^2+82^2+105^2+102^2+115^2+101^2+94^2+89^2+98^2+109^2+91^2+107^2)}}$$$$r_{xy}=-0.835$$Now, let's calculate the standard deviations of $x$ and $y$:$$s_x=\sqrt{\frac{\sum(x-\bar{x})^2}{n-1}}$$$$s_y=\sqrt{\frac{\sum(y-\bar{y})^2}{n-1}}$$$$s_x=\sqrt{\frac{(3-2)^2+(6-2)^2+(0-2)^2+(5-2)^2+(1-2)^2+(1-2)^2+(5-2)^2+(4-2)^2+(3-2)^2+(3-2)^2+(4-2)^2+(2-2)^2}{12-1}}$$$$s_x=\sqrt{\frac{44}{11}}=2$$$$s_y=\sqrt{\frac{\sum(y-\bar{y})^2}{n-1}}$$$$s_y=\sqrt{\frac{(112-99.17)^2+(82-99.17)^2+(105-99.17)^2+(102-99.17)^2+(115-99.17)^2+(101-99.17)^2+(94-99.17)^2+(89-99.17)^2+(98-99.17)^2+(109-99.17)^2+(91-99.17)^2+(107-99.17)^2}{12-1}}$$$$s_y=\sqrt{\frac{5626.1}{11}}=9.025$$Finally, let's calculate $\beta_1$ and $\beta_0$:$$\beta_1=r_{xy}\frac{s_y}{s_x}$$$$\beta_1=-0.835\frac{9.025}{2}=-3.762$$$$\beta_0=\bar{y}-\beta_1\bar{x}$$$$\beta_0=99.17-(-3.762)(3.08)=112.91$$Therefore, the regression equation is $y=112.91-3.762x$.Here, $\beta_0=112.91$ represents the expected IQ of a child with zero risk factors, while $\beta_1=-3.762$ represents the decrease in IQ per risk factor.B) James has 5 risk factors. Substituting $x=5$ in the regression equation, we get:$$y=112.91-3.762x$$$$y=112.91-3.762(5)$$$$y=93.13$$Therefore, the IQ predicted for James is $93.13$.Similarly, Elizabeth has 2 risk factors. Substituting $x=2$ in the regression equation, we get:$$y=112.91-3.762x$$$$y=112.91-3.762(2)$$$$y=105.39$$Therefore, the IQ predicted for Elizabeth is $105.39$.