214k views
1 vote
In a sealed and rigid container, a sample of gas at 4.40 atm and 60.0

°C is cooled to 20.0 °C. What is the pressure (in atm) of the gas at
20.0 °C?

User GreenGiant
by
7.4k points

1 Answer

4 votes

Step-by-step explanation:

To find the pressure of the gas at 20.0 °C, we can use the combined gas law, which states:

(P1 * V1) / (T1) = (P2 * V2) / (T2)

Where:

P1 = Initial pressure

V1 = Initial volume

T1 = Initial temperature

P2 = Final pressure (what we're trying to find)

V2 = Final volume (assuming the volume remains constant)

T2 = Final temperature

Given:

P1 = 4.40 atm

T1 = 60.0 °C = 333.15 K (converting to Kelvin)

T2 = 20.0 °C = 293.15 K (converting to Kelvin)

Since the volume is assumed to remain constant (rigid container), we can simplify the equation as follows:

P1 / T1 = P2 / T2

Now, we can substitute the given values and solve for P2:

(4.40 atm) / (333.15 K) = P2 / (293.15 K)

Cross-multiplying:

P2 = (4.40 atm) * (293.15 K) / (333.15 K)

≈ 3.874 atm

Therefore, the pressure of the gas at 20.0 °C is approximately 3.874 atm.

User Jerad Rutnam
by
7.5k points