Answer: BEAST MODE BABY MESSED WITH THE WRONG GUY
Explanation:
Based on the given coordinates, we can determine that quadrilateral QRST is a rectangle. This can be shown by calculating the distances between the points and showing that opposite sides are equal in length and that the diagonals are also equal in length.
The distance between points Q and R is sqrt((3 - (-2))^2 + (6 - 2)^2) = sqrt(25 + 16) = sqrt(41). The distance between points S and T is sqrt((3 - 8)^2 + (-2 - 2)^2) = sqrt(25 + 16) = sqrt(41). So, QR = ST.
The distance between points R and S is sqrt((8 - 3)^2 + (2 - 6)^2) = sqrt(25 + 16) = sqrt(41). The distance between points Q and T is sqrt((3 - (-2))^2 + (-2 - 2)^2) = sqrt(25 + 16) = sqrt(41). So, RS = QT.
The distance between points Q and S is sqrt((8 - (-2))^2 + (2 - 2)^2) = sqrt(100 + 0) = 10. The distance between points R and T is sqrt((3 - 3)^2 + (6 - (-2))^2) = sqrt(0 + 64) = 8. So, QS = RT.
Since opposite sides are equal in length and the diagonals are also equal in length, quadrilateral QRST is a rectangle.