Answer:
Explanation:
To determine the number of possible pairs of people in a group of 23, you can use the concept of combinations. The formula to calculate combinations is given by:
C(n, r) = n! / (r!(n - r)!)
where C(n, r) represents the number of combinations of choosing r items from a set of n items, and the exclamation mark (!) denotes the factorial of a number.
In this case, you want to find the number of combinations of 2 people chosen from a group of 23. Using the formula, the calculation would be:
C(23, 2) = 23! / (2!(23 - 2)!)
= 23! / (2! * 21!)
= (23 * 22 * 21!) / (2 * 1 * 21!)
= (23 * 22) / (2 * 1)
= 23 * 11
= 253
Therefore, there are 253 possible pairs of people that can be formed in a group of 23.