To simplify the expression (3x+5)(-2x^2-4+5x), we need to apply the distributive property and combine like terms.
Let's break down the expression step by step:
(3x+5)(-2x^2-4+5x)
Multiply the terms inside the parentheses:
= 3x * -2x^2 + 3x * -4 + 3x * 5x + 5 * -2x^2 + 5 * -4 + 5 * 5x
= -6x^3 - 12x + 15x^2 - 10x^2 - 20 - 20x
Now, let's combine the like terms:
= -6x^3 + 15x^2 - 10x^2 - 12x - 20x - 20
= -6x^3 + 5x^2 - 32x - 20
Therefore, the simplified form of (3x+5)(-2x^2-4+5x) is -6x^3 + 5x^2 - 32x - 20.