Final answer:
The exact value of sin 165° using a sum or difference identity is -√6(√6-√3)/4.
Step-by-step explanation:
To find the exact value of sin 165° using a sum or difference identity, we can use the identity sin(a + B) = sin a cos B + cos a sin B.
Let's choose a = 150° and B = 15°, since 150° + 15° = 165°.
Using the values in the identity, sin 165° = sin 150° cos 15° + cos 150° sin 15°
Simplifying the expression, sin 165° = (√3/2)(√6/4) + (-1/2)(√6/4)
Therefore, the exact value of sin 165° is (√3√6 - √6)/4, which is option A) -√6(√6-√3)/4.