41.9k views
0 votes
HELP ASAP

1. Find the Perimeter AND the Area of the following objects with the given coordinate
pairs:
(7,-5) (-5, 4) (-8, 0) (4, -9)
(VIEW PHOTO)

HELP ASAP 1. Find the Perimeter AND the Area of the following objects with the given-example-1
User Lordstyx
by
7.6k points

1 Answer

3 votes

Answer:

The given coordinate pairs are (7,-5), (-5, 4), (-8, 0), and (4, -9). We can use the distance formula to find the length of each side of the quadrilateral formed by these points.

The distance between (7,-5) and (-5, 4) is sqrt((7 - (-5))^2 + ((-5) - 4)^2) = sqrt(12^2 + (-9)^2) = 15.

The distance between (-5, 4) and (-8, 0) is sqrt((-5 - (-8))^2 + (4 - 0)^2) = sqrt(3^2 + 4^2) = 5.

The distance between (-8, 0) and (4, -9) is sqrt((-8 - 4)^2 + (0 - (-9))^2) = sqrt((-12)^2 + 9^2) = 15.

The distance between (4, -9) and (7,-5) is sqrt((4 - 7)^2 + ((-9) - (-5))^2) = sqrt((-3)^2 + (-4)^2) = 5.

So the perimeter of the quadrilateral is 15 + 5 + 15 + 5 = 40.

To find the area of the quadrilateral, we can divide it into two triangles by drawing a diagonal. Let’s use the diagonal between points (7,-5) and (-8,0). The length of this diagonal is sqrt((7 - (-8))^2 + ((-5) - 0)^2) = sqrt(15^2 + (-5)^2) = sqrt(225 + 25) = sqrt(250).

Now we can use Heron’s formula to find the area of each triangle. Let’s start with the triangle formed by points (7,-5), (-8,0), and (-5,4).

The semi-perimeter of this triangle is (15 + sqrt(250) + 5)/2. Let’s call this value s.

Using Heron’s formula, the area of this triangle is sqrt(s * (s - 15) * (s - sqrt(250)) * (s - 5)).

Now let’s find the area of the other triangle formed by points (7,-5), (-8,0), and (4,-9).

The semi-perimeter of this triangle is also (15 + sqrt(250) + 5)/2, which we have already called s.

Using Heron’s formula again, the area of this triangle is also sqrt(s * (s - 15) * (s - sqrt(250)) * (s - 5)).

So the total area of the quadrilateral is 2 * sqrt(s * (s - 15) * (s - sqrt(250)) * (s - 5)).

User Umair Hashmi
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories