Explanation:
To calculate the probability of exactly 2 out of 4 customers ordering their food to go, we can use the binomial probability formula. The binomial probability formula calculates the probability of getting exactly k successes in n independent Bernoulli trials.
The formula for the binomial probability is:
P(X = k) = (n C k) * p^k * (1 - p)^(n - k)
Where:
P(X = k) is the probability of getting exactly k successes,
n is the number of trials,
k is the number of successes,
p is the probability of success on a single trial,
(1 - p) is the probability of failure on a single trial,
and (n C k) is the binomial coefficient, calculated as n! / (k! * (n - k)!)
In this case:
n = 4 (number of customers in the sample),
k = 2 (number of customers ordering their food to go),
p = 0.52 (proportion of customers ordering their food to go).
Let's calculate the probability:
P(X = 2) = (4 C 2) * 0.52^2 * (1 - 0.52)^(4 - 2)
Using the binomial coefficient:
(4 C 2) = 4! / (2! * (4 - 2)!) = 6
Calculating the probability:
P(X = 2) = 6 * 0.52^2 * (1 - 0.52)^(4 - 2)
= 6 * 0.2704 * 0.2704
= 0.4374 (rounded to four decimal places)
Therefore, the probability that exactly 2 out of 4 customers at Anita's order their food to go is approximately 0.4374, or 43.74%.