183k views
3 votes
If p is inversely proportional to the square of q and p is 28 when q is 3, determine p and q is equal to 2

User Michal S
by
8.1k points

1 Answer

4 votes


\qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}} ~\hspace{6em} \stackrel{\textit{constant of variation}}{y=\cfrac{\stackrel{\downarrow }{k}}{x}~\hfill } \\\\ \textit{\underline{x} varies inversely with }\underline{z^5} ~\hspace{5.5em} \stackrel{\textit{constant of variation}}{x=\cfrac{\stackrel{\downarrow }{k}}{z^5}~\hfill } \\\\[-0.35em] ~\dotfill


\stackrel{\textit{P varies inversely with }Q^2}{P = \cfrac{k}{Q^2}}\hspace{5em}\textit{we also know that} \begin{cases} Q=3\\ P=28 \end{cases} \\\\\\ 28=\cfrac{k}{3^2}\implies 28=\cfrac{k}{9}\implies 252 = k\hspace{5em}\boxed{P=\cfrac{252}{Q^2}} \\\\\\ \textit{when Q = 2, what is

User Ali Aljarah
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories