Answer:
-(cotx-1)⁴/4 + C
Explanation:
Let u = cotx - 1. Then du = -csc²x dx.
Substituting u and du into the integral, we get:
∫ csc²x(cotx-1)³ dx = -∫ u³ du
Now, we can evaluate the integral using the reverse power rule:
∫ uⁿ du = u^(n+1)/(n+1) + C
Put n = 3
-∫ u³ du = -u⁴/4 + C
substituting u back to cotx - 1
-u⁴/4 + C = -(cotx-1)⁴/4 + C
Therefore, the value of the integral is -(cotx-1)⁴/4 + C.