Final answer:
To evaluate the expression [2(cos 58° + i sin 58°)]^3 in the form a + bi, we can apply De Moivre's theorem. The result, rounded to 2 decimal places, is -7.68 - 1.72i.
Step-by-step explanation:
To evaluate the expression [2(cos 58° + i sin 58°)]^3 in the form a + bi, we can use De Moivre's theorem for exponentiation of complex numbers.
De Moivre's theorem states that (r(cos θ + i sin θ))^n = r^n (cos nθ + i sin nθ).
Applying De Moivre's theorem to our expression, we have:
(2(cos 58° + i sin 58°))^3 = 2^3 (cos (3 * 58°) + i sin (3 * 58°))
Calculating the angle: 3 * 58° = 174°
Rounding to 2 decimal places, the result is: 8(cos 174° + i sin 174°) = 8(cos 180° - 6° + i sin 180° - 6°) = -7.68 - 1.72i