20.2k views
0 votes
Donnez l’intégral de -x+5/(x^2-4x+4)(x+1)

User Lothar
by
7.6k points

1 Answer

3 votes

Answer:


(2)/(3)\ln(x+1)-(1)/(x-2) -(2)/(3)\ln(x-2)+C

Explanation:

Integrate the following expression.


\int (-x+5)/((x^2-4x+4)(x+1))


\hrulefill

In order to integrate this function we are gonna have to use partial fraction decomposition. Start by factoring the the denominator completely.


\int (-x+5)/((x^2-4x+4)(x+1))dx\\\\\Longrightarrow \int (-x+5)/((x-2)^2(x+1))dx

Now we can apply partial fractions. Partial fractions allows us to split up complex fractions, in doing so this will make them easier to integrate.


(-x+5)/((x-2)^2(x+1))=(A)/(x+1)+(B)/((x-2)^2)+(C)/(x-2)\\\\\Longrightarrow (-x+5)/((x-2)^2(x+1))=(A)/(x+1)+(B)/((x-2)^2)+(C)/(x-2) \Big](x-2)^2(x+1)\\\\\Longrightarrow \boxed{-x+5=A(x-2)^2+B(x+1)+C(x-2)(x+1)}

Expand the right-hand-side and use the comparison method to find the values of the undetermined coefficients, A, B, and C.


-x+5=A(x-2)^2+B(x+1)+C(x-2)(x+1)\\\\\Longrightarrow -x+5=Ax^2-4Ax+4A+Bx+B+Cx^2-Cx-2C\\\\\Longrightarrow \boxed{0x^2-x+5(1)=(A+C)x^2+(-4A+B-C)x+(4A+B-2C)(1)}

We can now form a system of equations.

For x^2 terms:


A+C=0

For x terms:


-4A+B-C=-1

For #'s:


4A+B-2C=5


\Longrightarrow \left\{\begin{array}{ccc}A+C=0\\-4A+B-C=-1\\4A+B-2C=5\end{array}\right

You can use any method of choice to solve the system of equations. I am going to put the system in a matrix and use my calculator to row reduce.


\Longrightarrow \left[\begin{array}{ccc}1&0&1\\-4&1&-1\\4&1&-2\end{array}\right] =\left[\begin{array}{c}0\\-1\\5\end{array}\right]\\\\ \\ \ \ \ \Longrightarrow \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] =\left[\begin{array}{c}(2)/(3) \\1\\-(2)/(3)\end{array}\right]\\\\\\\therefore \boxed{A=(2)/(3), \ B=1, \ \text{and} \ C=-(2)/(3)}

Now we can split up the fraction.


(-x+5)/((x-2)^2(x+1))=(A)/(x+1)+(B)/((x-2)^2)+(C)/(x-2)\\\\\Longrightarrow \boxed{(-x+5)/((x-2)^2(x+1))=((2)/(3) )/(x+1)+(1)/((x-2)^2)+(-(2)/(3))/(x-2)}

We can integrate the three fractions separately.


\Longrightarrow \int ((2)/(3) )/(x+1)dx+ \int (1)/((x-2)^2)dx+\int (-(2)/(3))/(x-2)dx\\\\\Longrightarrow \boxed{(2)/(3)\int (1 )/(x+1)dx+ \int (1)/((x-2)^2)dx-(2)/(3)\int (1)/(x-2)dx}\\\\

For the first integral let u=x+1 => du=dx, for the second let v=x-2 => dv=dx, and for the third integral let w=x-2 => dw=dx


\Longrightarrow (2)/(3) \int (1 )/(u)du+ \int (1)/(v^2)dv-(2)/(3)\int (1)/(w)dw\\\\\Longrightarrow \boxed{(2)/(3) \int (1 )/(u)du+ \int v^(-2)dv-(2)/(3)\int (1)/(w)dw}

Use the rules of integration to integrate.


\boxed{\left\begin{array}{ccc}\text{\underline{Natural Log Rule:}}\\\\ \int(1)/(x)dx=\ln(x) \end{array}\right} \ \ \boxed{\left\begin{array}{ccc}\text{\underline{Power Rule:}}\\\\ \int x^ndx=(x^(n+1))/(n+1) \end{array}\right}


(2)/(3) \int (1 )/(u)du+ \int v^(-2)dv-(2)/(3)\int (1)/(w)dw\\\\\Longrightarrow (2)/(3)\ln(u)-v^(-1)-(2)/(3)\ln(w)+C\\\\\Longrightarrow (2)/(3)\ln(x+1)-(x-2)^(-1)-(2)/(3)\ln(x-2)+C\\\\\Longrightarrow (2)/(3)\ln(x+1)-(1)/(x-2) -(2)/(3)\ln(x-2)+C\\\\\therefore \boxed{\boxed{\int (-x+5)/((x^2-4x+4)(x+1))=(2)/(3)\ln(x+1)-(1)/(x-2) -(2)/(3)\ln(x-2)+C}}

Thus, the given integral is solved where "C" is some arbitrary constant that can be found given an initial condition.

User Crxyz
by
7.9k points

Related questions

asked Dec 21, 2024 157k views
Austinthesing asked Dec 21, 2024
by Austinthesing
7.9k points
1 answer
3 votes
157k views
asked Jan 24, 2024 182k views
Hortense asked Jan 24, 2024
by Hortense
8.0k points
2 answers
0 votes
182k views
asked Sep 5, 2024 31.5k views
RoguePlanetoid asked Sep 5, 2024
by RoguePlanetoid
8.1k points
2 answers
2 votes
31.5k views