To determine how the surface area of a rectangular prism changes when all dimensions are quadrupled, we need to compare the original surface area to the new surface area.
The original surface area of the rectangular prism is given by:
SA_original = 2lw + 2lh + 2wh
where l, w, and h represent the length, width, and height of the prism, respectively.
In this case, the dimensions of the original box are:
Length (l) = 3 ft
Width (w) = 6 ft
Height (h) = 5 ft
Substituting these values into the formula, we have:
SA_original = 2(3)(6) + 2(3)(5) + 2(6)(5)
= 36 + 30 + 60
= 126 square feet
Now, if we quadruple all the dimensions of the box, the new dimensions would be:
Length (l_new) = 4(3) = 12 ft
Width (w_new) = 4(6) = 24 ft
Height (h_new) = 4(5) = 20 ft
The new surface area of the enlarged box is given by:
SA_new = 2(l_new)(w_new) + 2(l_new)(h_new) + 2(w_new)(h_new)
= 2(12)(24) + 2(12)(20) + 2(24)(20)
= 576 + 480 + 960
= 2016 square feet
Comparing the original surface area (SA_original = 126 sq ft) to the new surface area (SA_new = 2016 sq ft), we can see that SA_new is 16 times greater than SA_original.
Therefore, the correct answer is:
1. The new surface area would be 16 times the original surface area.