139k views
5 votes
Find the area of the region.
y=8x , y=5x^2
CHOICE C у 14 12 10 8 6 4 2. - X 0.5 1.0 1.5

1 Answer

2 votes

Answer:

256/75 or about 3.143

Explanation:

Find intersection points


8x=5x^2\\8x-5x^2=0\\x(8-5x)=0\\x=0,\,x=(8)/(5)

Set up integral and evaluate


\displaystyle A=\int^b_a(\text{Upper Function}-\text{Lower Function})dx\\\\A=\int^(8)/(5)_0(8x-5x^2)dx\\\\A=4x^2-(5)/(3)x^3\biggr|^(8)/(5)_0\\\\A=4\biggr((8)/(5)\biggr)^2-(5)/(3)\biggr((8)/(5)\biggr)^3\\\\A=4\biggr((64)/(25)\biggr)-(5)/(3)\biggr((512)/(125)\biggr)\\\\A=(256)/(25)-(2560)/(375)\\\\A=(3840)/(375)-(2560)/(375)\\\\A=(1280)/(375)\\\\A=(256)/(75)=3.41\overline{3}

I've attached a graph of the area between the two curves in case it helps you understand better!

Find the area of the region. y=8x , y=5x^2 CHOICE C у 14 12 10 8 6 4 2. - X 0.5 1.0 1.5-example-1
User Boxer Robert
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories