Answer:
Perimeter = 2*(na) + 2b
= 2na + 2*b
The area of the polygon would be equal to the combined area of the cards.
Explanation:
To arrange the rectangular cards without overlapping to form one larger polygon with the smallest possible perimeter, Juanita should align the cards in a way that their sides form the perimeter of the polygon.
If each rectangular card has dimensions "a" inches by "b" inches, Juanita can arrange them by aligning the sides of the cards in a continuous manner. Let's assume she arranges "n" cards in a row. The resulting polygon will have a length of n*a inches and a width of b inches.
The perimeter of the polygon can be calculated by adding the lengths of all sides. In this case, since we have n cards aligned horizontally, the perimeter would be the sum of the lengths of the top and bottom sides, as well as the sum of the lengths of the left and right sides.
Perimeter = 2*(na) + 2b
= 2na + 2*b
The area of the resulting polygon can be calculated by multiplying its length by its width.
Area = (na) * b
= na*b
Now, let's compare the area of the polygon to the combined area of the individual cards. Assuming Juanita has "n" cards, the combined area of the cards would be n*(ab), as each card has an area of ab.
The ratio of the area of the polygon to the combined area of the cards can be calculated as:
Area of the polygon / Combined area of the cards
= (nab) / (n*(a*b))
= 1
Therefore, the area of the polygon would be equal to the combined area of the cards.
To summarize, to form the smallest possible perimeter, Juanita should align the rectangular cards in a continuous manner, and the resulting polygon's perimeter would be 2na + 2*b. The area of the polygon would be equal to the combined area of the cards.