Answer:
options A and B
Explanation:
We can evaluate the options using the given information:
Option A: When x = 2, f(2) = (2)^2 - 4(2) - 12 = 4 - 8 - 12 = -16 (matches the given minimum value).
Option B: When x = 2, f(2) = (2 - 2)^2 - 16 = 0 - 16 = -16 (matches the given minimum value).
Option C: When x = 2, f(2) = (2 - 2)(2 + 16) = 0 * 18 = 0 (does not match the given minimum value).
Option D: When x = 2, f(2) = (2 - 6)(2 - 2) = -4 * 0 = 0 (does not match the given minimum value).
Option E: When x = 2, f(2) = (2 - 6)^2 + 2 = (-4)^2 + 2 = 16 + 2 = 18 (does not match the given minimum value).
Option F: When x = 2, f(2) = (2)^2 - 8(2) + 12 = 4 - 16 + 12 = 0 (does not match the given minimum value).
Based on the analysis, options A and B are the only ones that match the given information. Therefore, the equivalent forms of the function f(x) are A. f(x) = x^2 - 4x - 12 and B. f(x) = (x - 2)^2 - 16.