Explanation:
B^2+8b+7 is a quadratic expression. It can be factored as (b+7)(b+1).
To factor a quadratic expression, you can use the following steps:
1. Find two numbers that add up to the coefficient of the middle term (8) and multiply to the constant term (7).
2. Write the quadratic expression as a product of two binomials, with the two numbers you found in step 1 as the coefficients of the terms in each binomial.
In this case, the two numbers that add up to 8 and multiply to 7 are 7 and 1. So, we can factor B^2+8b+7 as follows:
(b+7)(b+1)
This means that B^2+8b+7 is equal to the product of (b+7) and (b+1).
Here is a step-by-step explanation of how to factor B^2+8b+7:
1. The coefficient of the middle term is 8.
2. The constant term is 7.
3. The two numbers that add up to 8 and multiply to 7 are 7 and 1.
4. Therefore, B^2+8b+7 can be factored as (b+7)(b+1).