159k views
3 votes
URGENT!!!

(Q2)
What is the product of the matrices Matrix with 1 row and 3 columns, row 1 negative 3 comma 3 comma 0, multiplied by another matrix with 3 rows and 1 column. Row 1 is negative 3, row 2 is 5, and row 3 is negative 2.?

A) Matrix with 2 rows and 1 column. Row 1 is 9, and row 2 is 15.
B) Matrix with 1 row and 3 columns. Row 1 is 9 and 15 and 0.
C) Matrix with 3 rows and 3 columns. Row 1 is 9 comma negative 9 comma 0, row 2 is negative 15 comma 15 comma 0, and row 3 is 6 comma negative 6 comma 0.
D) [24]

User Znik
by
7.9k points

1 Answer

6 votes

Answer:

The product of the two matrices is a 1x1 matrix with the value 24. So the correct answer is D) [24].

Here’s how to calculate it:

Matrix A = [-3, 3, 0] and Matrix B = [-3, 5, -2]T (where T denotes the transpose of the matrix).

The product of the two matrices is calculated by multiplying each element in the first row of Matrix A by the corresponding element in the first column of Matrix B and then summing up the products:

(-3) * (-3) + 3 * 5 + 0 * (-2) = 9 + 15 + 0 = 24

User Std
by
8.6k points