Answer:
Explanation:
The
average rate of change
of y over an interval between 2 points (a ,f(a)) and (b ,f(b)) is the slope of the
secant line
connecting the 2 points.
To calculate the average rate of change between the 2 points use.
a
a
f
(
b
)
−
f
(
a
)
b
−
a
a
a
∣
∣
∣
−−−−−−−−−−−−−−−
f
(
4
)
=
4
2
+
4
+
1
=
21
and
f
(
1
)
=
1
2
+
1
+
1
=
3
The average rate of change between (1 ,3) and (4 ,21) is
21
−
3
4
−
1
=
18
3
=
6
This means that the average of all the slopes of lines tangent to the graph of y between (1 ,3) and (4 ,21) is 6.